Monoclonal antibodies detect and stabilize conformational states of smooth muscle myosin

نویسندگان

  • K M Trybus
  • L Henry
چکیده

Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the rod is different in the folded than the extended monomeric state, and suggest that this perturbation may extend into the subfragment 2 region of the rod. Two antihead antibodies with epitopes on the heavy chain map at or near the head/rod junction. Magnesium greatly enhances the binding of these antibodies to myosin, showing that the conformation of the heavy chain in the neck region changes upon divalent cation binding to the regulatory light chain. Myosin assembly is also altered by antibody binding. Antibodies that bind to the central region of the rod block disassembly of filaments upon MgATP addition. Antibodies with epitopes near the COOH terminus of the rod, in contrast, promote filament depolymerization, suggesting that this region of the tail is important for assembly. The monoclonal antibodies described here are therefore useful both for detecting and altering conformational states of smooth muscle myosin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibodies probe for folded monomeric myosin in relaxed and contracted smooth muscle

Regulatory light chain phosphorylation is required for assembly of smooth and non-muscle myosins in vitro, but its effect on polymerization within the cell is not understood. Relaxed smooth muscle cells contain dephosphorylated thick filaments, but this does not exclude the presence of a pool of folded myosin monomers which could be recruited to assemble when phosphorylated, thus forming part o...

متن کامل

Inhibition of smooth muscle myosin's activity and assembly by an anti-rod monoclonal antibody.

Monoclonal antibodies specific for the rod region can affect smooth muscle myosin's motor properties. Actin movement by phosphorylated myosin was inhibited by an antibody (LMM.4) which binds to the COOH-terminal end of the coiled-coil rod, a region thought to be involved in filament assembly. The actin-activated ATPase activity of the myosin-antibody LMM.4 complex was also reduced 10-fold at ac...

متن کامل

Identification and localization of caldesmon in cardiac muscle.

Caldesmon has been detected in smooth muscle and in a number of non-muscle cells. It binds both actin and myosin and may act as a regulator of contraction or a structural element in smooth muscle. The presence of caldesmon in striated muscle has not been well established. To address this issue, polyclonal antibodies and a panel of monoclonal antibodies were raised against chicken gizzard smooth...

متن کامل

Myosin conformational states determined by single fluorophore polarization.

Muscle contraction is powered by the interaction of the molecular motor myosin with actin. With new techniques for single molecule manipulation and fluorescence detection, it is now possible to correlate, within the same molecule and in real time, conformational states and mechanical function of myosin. A spot-confocal microscope, capable of detecting single fluorophore polarization, was develo...

متن کامل

A role for serine-175 in modulating the molecular conformation of calponin.

Calponin is an actin filament-associated protein found in smooth muscle and non-muscle cells. Calponin inhibits actin-myosin interaction in a manner that is prevented by protein kinase C (PKC)-catalysed phosphorylation of serine-175. To investigate the molecular basis of serine-175-mediated regulation, we examined the effect of phosphorylation on the conformation of calponin using monoclonal an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1989